Фазированная антенная решетка. Высокочувствительные антенны на основе массива управляемых пассивных рассеивателей

Возбуждения каждого излучающего элемента антенной решётки. Отличие фазированной антенной решётки заключается в том, что амплитудно-фазовое распределение не является фиксированным, оно может регулироваться (управляемо изменяться) при эксплуатации . Благодаря этому можно перемещать луч (главный лепесток диаграммы направленности) антенной решётки в определённом секторе пространства (антенная решётка с электрическим сканированием луча как альтернатива антенне с механическим сканированием, то есть альтернатива механически вращающейся антенне ) или изменять форму диаграммы направленности.

Эти и некоторые другие свойства ФАР, а также возможность применять для управления ФАР современные средства автоматики и вычислительной техники обусловили их перспективность и широкое использование в радиосвязи, радиолокации, радионавигации, радиоастрономии и т. д. ФАР, содержащие большое число управляемых элементов, входят в состав различных наземных (стационарных и подвижных), корабельных, авиационных и космических радиотехнических систем. Ведутся интенсивные разработки в направлении дальнейшего развития теории и техники ФАР и расширения области их применения.

Энциклопедичный YouTube

    1 / 4

    ✪ Диаграмма направленности диполя

    ✪ Phased Array Antenna Beam Steering Animation (Beamforming)

    ✪ Видеоурок CADFEM VL1306 - Обзор возможностей ANSYS HFSS для анализа антенных решёток ч.2

    ✪ Beamforming by Phased Array Antennas

    Субтитры

Преимущества

    Антенная решётка из N излучающих элементов позволяет увеличить приблизительно в N раз коэффициент направленного действия (КНД) и, следовательно, коэффициент усиления антенны по сравнению с одиночным излучателем, а также сузить луч для повышения помехозащищенности, разрешающей способности по угловым координатам, точности пеленгации источников радиоизлучения в радиолокации и радионавигации .

  • В антенной решётке возможно увеличение электрической прочности по сравнению с апертурной антенной, оснащённой одиночным облучателем.
  • Важным преимуществом ФАР является возможность быстрого обзора (сканирования) пространства за счёт «качания» луча диаграммы направленности электрическими методами (по сравнению с антеннами с механическим сканированием луча). Такая ФАР является антенной с электрическим сканированием луча .
  • Функциональные возможности ФАР расширяются при использовании совместно с каждым излучающим элементом активного приёмопередающего модуля [см. Активная фазированная антенная решётка (АФАР)].
  • Имеется ряд конструктивно-технологических преимуществ по сравнению с другими классами антенн. Например, улучшаются массогабаритные характеристики бортовой аппаратуры благодаря использованию антенных решёток в печатном исполнении (выполненных в виде печатных плат). Снижение стоимости больших радиоастрономических телескопов достигается благодаря применению зеркальных антенных решёток.
  • История

    Такие радары не устанавливались на самолётах главным образом из-за их большого веса, поскольку первое поколение технологии фазированных решёток использовало обычную радарную архитектуру. В то время как антенна изменилась, всё остальное ещё оставалось прежним, но были добавлены дополнительные вычислители, чтобы управлять фазовращателями антенны. Это привело к увеличению массы антенны, числа вычислительных модулей, нагрузки на систему электропитания.

    Однако сравнительно высокая стоимость ФАР окупалась теми преимуществами, которые обеспечивало их применение. Фазированные антенные решётки могли в единственной антенне совместить работу нескольких антенн, почти одновременно. Широкие лучи могли использоваться для поиска цели, узкие - для сопровождения, плоские лучи в форме веера для определения высоты, узкие направленные лучи для полёта по ландшафту (B-1B , Су-34). Во враждебной зоне электронного противодействия выгода становится ещё больше, так как ФАР позволяют системе размещать «ноль» диаграммы направленности антенны (то есть область, где антенна не чувствительна к электромагнитному излучению, «слепа») в направлении источника помех и таким образом блокировать их попадание в приёмник. Другое преимущество - отказ от механического поворота антенны при сканировании луча, что повышает скорость обзора пространства на порядки, а также увеличивает срок службы системы, так как с введением фазирования частично отпала потребность в громоздких механизмах ориентации антенного полотна в пространстве. ФАР, состоящая из трёх-четырёх плоских полотен, может обеспечить круговой обзор пространства, вплоть до всей верхней полусферы.

    Эта технология также предоставляла менее очевидные выгоды. Она могла быстро «осмотреть» маленький участок неба, чтобы увеличить вероятность обнаружения маленькой и скоростной цели, в отличие от медленно вращающейся антенны, которая может сканировать специфический сектор только однажды за оборот (обычно период обзора РЛС с вращающейся по азимуту антенной составляет от 5 до 20 секунд). Цель с малой эффективной площадью рассеяния (ЭПР) (например, низко летящую крылатую ракету) почти невозможно засечь вращающейся антенной. Способность фазированной решётки к почти мгновенному изменению направления и формы луча фактически добавляют целое новое измерение к сопровождению целей, поскольку разные цели могут быть отслежены разными лучами, каждый из которых переплетается во времени с периодически сканирующим лучом обзора пространства. Например, луч обзора пространства может охватывать 360 градусов периодически, тогда как сопровождающие лучи могут следить за индивидуальными целями независимо от того, куда в это время направлен луч обзора пространства.

    Применение ФАР имеет ограничения. Одно из них - размеры сектора пространства, в пределах которого возможно сканирование луча без существенного ухудшения других показателей качества работы ФАР. Практически для плоской ФАР предел составляет 45-60 градусов от геометрической нормали к антенному полотну. Отклонение луча на большие углы значительно ухудшает основные характеристики антенной системы (УБЛ, КНД, ширину и форму основного лепестка диаграммы направленности). Это объясняется двумя эффектами. Первый из них - уменьшение эффективной площади антенны (апертуры) с ростом угла отклонения луча. В свою очередь, сокращение длины решётки в сочетании со снижением коэффициента усиления антенны уменьшает способность обнаружения цели на расстоянии.

    Наибольшими возможностями управления характеристиками обладают активные ФАР , в которых к каждому излучателю или модулю подключён управляемый по фазе (иногда и по амплитуде) передатчик или приёмник. Управление фазой в активных ФАР может производиться в трактах промежуточной частоты либо в цепях возбуждения когерентных передатчиков, гетеродинов приёмников и т. п. Таким образом, в активных ФАР фазовращатели могут работать в диапазонах волн, отличных от частотного диапазона антенны; потери в фазовращателях в ряде случаев непосредственно не влияют на уровень основного сигнала. Передающие активные ФАР позволяют осуществить сложение в пространстве мощностей когерентных электромагнитных волн, генерируемых отдельными передатчиками. В приёмных активных ФАР совместная обработка сигналов, принятых отдельными элементами, позволяет получать более полную информацию об источниках излучения.

    В результате непосредственного взаимодействия излучателей между собой характеристики ФАР (согласование излучателей с возбуждающими фидерами, КНД и др.) при качании луча изменяются. Для борьбы с вредными последствиями взаимного влияния излучателей в ФАР иногда применяют специальные методы компенсации взаимной связи между элементами.

    Структура ФАР

    Формы, размеры и конструкции современных ФАР весьма разнообразны; их разнообразие определяется как типом используемых излучателей, так и характером их расположения. Сектор сканирования ФАР определяется ДН её излучателей. В ФАР с быстрым широкоугольным качанием луча обычно используются слабонаправленные излучатели: симметричные и несимметричные вибраторы, часто с одним или несколькими рефлекторами (например, в виде общего для всей ФАР зеркала); открытые концы радиоволноводов, щелевые, рупорные, спиральные, диэлектрические стержневые, логопериодические и др. антенны. Иногда большие по размерам ФАР составляют из отдельных малых ФАР (модулей); ДН последних ориентируется в направлении основного луча всей ФАР. В ряде случаев, например когда допустимо медленное отклонение луча, в качестве излучателей используют остронаправленные антенны с механическим поворотом (например, т. н. полноповоротные зеркальные); в таких ФАР отклонение луча на большой угол выполняют посредством поворота всех антенн и фазирования излучаемых ими волн; фазирование этих антенн позволяет также осуществлять в пределах их ДН быстрое качание луча ФАР.

    В зависимости от требуемой формы ДН и необходимого пространственного сектора сканирования в ФАР применяют различное взаимное расположение элементов:

    • вдоль линии (прямой или дуги);
    • по поверхности (например, плоской - в т. н. плоских ФАР; цилиндрической; сферической)
    • в заданном объёме (объёмные ФАР).

    Иногда форма излучающей поверхности ФАР - раскрыва, определяется конфигурацией объекта, на котором устанавливается ФАР. ФАР с формой раскрыва, подобной форме объекта, иногда называются конформными. Широко распространены плоские ФАР; в них луч может сканировать от направления нормали к раскрыву (как в синфазной антенне) до направления вдоль раскрыва (как в антенне бегущей волны). Коэффициент направленного действия (КНД) плоской ФАР при отклонении луча от нормали к раскрыву уменьшается. Для обеспечения широкоугольного сканирования (в больших пространственных углах - вплоть до 4 стерадиан без заметного снижения КНД используют ФАР с неплоским (например, сферическим) раскрывом или системы плоских ФАР, ориентированных в различных направлениях. Сканирование в этих системах осуществляется посредством возбуждения соответственно ориентированных излучателей и их фазирования.

    По способу изменения фазовых сдвигов различают ФАР:

    • с электромеханическим сканированием, осуществляемым, например, посредством изменения геометрической формы возбуждающего радиоволновода;
    • частотным сканированием, основанным на использовании зависимости фазовых сдвигов от частоты, например за счёт длины фидера между соседними излучателями или дисперсии волн в радиоволноводе;
    • с электрическим сканированием, реализуемым при помощи фазосдвигающих цепей или фазовращателей , управляемых электрическими сигналами с плавным (непрерывным) или ступенчатым (дискретным) изменением фазовых сдвигов.

    Наибольшими возможностями обладают ФАР с электрическим сканированием. Они обеспечивают создание разнообразных фазовых сдвигов по всему раскрыву и значительную скорость изменения этих сдвигов при сравнительно небольших потерях мощности. На СВЧ в современных ФАР широко используют ферритовые и полупроводниковые фазовращатели (с быстродействием порядка микросекунд и потерями мощности ~ 20 %). Управление работой фазовращателей осуществляется при помощи быстродействующей электронной системы, которая в простейших случаях управляет группами элементов (например, строками и столбцами в плоских ФАР с прямоугольным расположением излучателей), а в наиболее сложных - каждым фазовращателем в отдельности. Качание луча в пространстве может производиться как по заранее заданному закону, так и по программе, вырабатываемой в ходе работы всего радиоустройства, в которое входит ФАР.

    Помехозащищённость

    Помехозащищённость системы зависит от уровня боковых лепестков антенны и возможности подстройки (адаптации) его по помеховой обстановке. Антенная решётка - необходимое звено для создания такого динамического пространственно-временного фильтра, или просто для уменьшения УБЛ . Одной из важнейших задач современной бортовой радиоэлектроники является создание комплексированной системы, совмещающей несколько функций, например радионавигации , РЛС , связи и т. д. Возникает необходимость создания антенной решётки с электрическим сканированием с несколькими лучами (многолучевой, моноимпульсной и т. д.), работающей на различных частотах (совмещённой) и имеющей различные характеристики.

    Классификация

    Антенные решётки могут быть классифицированы по следующим основным признакам:

    • Геометрия расположения излучателей в пространстве:
      • линейные
      • дуговые
      • кольцевые
      • плоские
        • с прямоугольной сеткой размещения
        • с косоугольной сеткой размещения
      • выпуклые
        • цилиндрические
        • конические
        • сферические
      • пространственные
    • Способ возбуждения:
      • с последовательным питанием
      • с параллельным питанием
      • с комбинированным (последовательно-параллельным)
      • с пространственным (оптическим, «эфирным») способом возбуждения
    • закономерность размещения излучающих элементов в самой решётке
      • эквидистантное размещение
      • неэквидистантное размещение
    • Способ обработки сигнала
    • Амплитудо-фазовое распределение токов (поля) по решётке
    • Тип излучателей

    Обработка сигнала

    В питающем антенную решётку тракте (фидере) возможна различная пространственно-временная обработка сигнала. Изменение фазового распределения в решётке с помощью системы фазовращателей в питающем тракте позволяет управлять максимумом диаграммы направленности . Такие решётки называют фазированными антенными решётками (ФАР). Если к каждому излучателю ФАР, или к группе подключается усилитель мощности, генератор сигналов , или преобразователь частоты , то такие решётки называются активными фазированными антенными решётками (АФАР).

    Адаптивные АР

    Приёмные антенные решётки с саморегулируемым амплитудно-фазовым распределением в зависимости от помеховой обстановки называют адаптивными . Приёмные антенные решётки с обработкой сигнала методами когерентной оптики называются радиооптическими . Приёмные антенные решётки, в которых обработка ведётся цифровыми процессорами, называются цифровыми антенными решётками .

    Совмещённые антенные решётки

    Совмещённые антенные решётки имеют в своём раскрыве два, или более типа излучателей, каждый из которых работает в своём

Лекция 6

Фазированные антенные решетки

Введение

В процессе развития радиотехники и электроники антенны претерпели существенное изменение: из простых устройств (один вибратор или несколько) преобразовались в сложные управляемые многоэлементные системы с активными приборами. Если на первых этапах развития антенна должна была обеспечить эффективное излучение и прием, то потом от антенны потребовалось значительное усиление, получаемое за счет направленности действия. С появлением радиосистем локации, навигации и управления приемные антенны стали осуществлять пеленгацию, т.е. определять угловые координаты излученных или отраженных волн с возможно большей точностью. Резкий рост оснащенности радиоэлектронными средствами, произошедший в последний период, создал проблему электромагнитной совместимости (ЭМС). Для осуществления ЭМС в приемных антеннах возникла необходимость формирования глубоких провалов в ДН для направления прихода помех. Помеховая обстановка непрерывно меняется, поэтому потребовались самоприспосабливающиеся антенны - адаптивные. Появление новых видов боевых действий - радиоэлектронной борьбы - привело к необходимости решения в антенной технике проблем, аналогичных перечисленным проблемам, но при более сложных условиях. В настоящее время радиосистемы должны работать при действии нескольких мощных широкополосных помех в условиях независимого перемещения источников помех. В этих случаях антенна ведет пространственную обработку сигнала, т. е. становится динамическим пространственным фильтром. Антенны с электрическим сканированием также являются антеннами с пространственной обработкой сигнала.

В современных передающих и приемных антенных системах возникла необходимость временной обработки сигнала (в частотной области). В антенный тракт решетки может включаться система параллельно работающих активных элементов (приборов): генераторов, усилителей, смесителей, преобразователей частот, аналого-цифровых преобразователей и т. д. Замена одного активного элемента (в передатчике или приемнике) на систему параллельно работающих в антенном тракте элементов позволяет решить ряд задач антенной техники. Остановимся только на некоторых моментах. Включение активного элемента в антенный тракт делает антенну, как правило, невзаимным и нелинейным устройством, что существенно изменяет облик антенны в режиме передачи и приема. Независимая пространственная обработка сигналов в антенне, а затем временная обработка в приемнике затрудняет, а иногда исключает, получение полной информации о пространственно-частотном распределении источников в окружающем пространстве (радиосцене). Параллельная пространственно-временная обработка ряда выборок из падающих волн в приемной антенне позволяет увеличить объем одновременно поступающей информации.

Дальнейшее совершенствование различных радиосистем стимулирует решение новых задач антенной техники. Одним из направлений развития антенной техники является создание антенн с пространственно-временной обработкой. Применяя в таких системах новые конструкторско-технологические решения (сверхширокополосные, печатные, микрополосковые, совмещенные и другие антенны), достижения в микроэлектронике, когерентной радиооптике, голографии и т. д., можно достичь желаемых результатов.

При механическом сканировании, выполняемом поворотом всей антенны, максимальная скорость движения луча в пространстве ограничена и при современных скоростях летательных аппаратов оказывается недостаточной. Поэтому возникла необходимость в разработке новых типов антенн - фазированных антенных решеток (ФАР) .

Применение ФАР для построения сканирующих остронаправленных антенн позволяет реализовать высокую скорость обзора пространства и способствует увеличению объема информации о распределении источников излучения или отражения электромагнитных волн в окружающем пространстве.

Многообразие используемых и создаваемых антенн принято классифицировать по рабочим диапазонам волн, их электрическим характеристикам, конструкторско-технологическому исполнению, областям применения и т. д. Такие классификации не учитывают функциональные возможности современных антенн. Превращение антенны из устройства в систему изменяет подход к классификации антенн. Целесообразно подойти к развитию антенн как к совершенствованию некоторой радиосистемы и рассматривать различные существующие, разрабатываемые и вновь предлагаемые антенны, и процессы, происходящие в них, с единых позиций. Критерием классификации и развития антенн можно принять обработку информации (сигнала), происходящую в антенне и ее СВЧ-тракте. Такая обработка может осуществляться на частотах принимаемого (или излучаемого) сигнала, на более высоких или более низких (промежуточных) частотах, быть линейной или не линейной, аналоговой или цифровой, адаптивной и т. д. Так как поле, падающее на отдельный элемент решетки, характеризуется поляризацией, амплитудой и фазой, то в антенной решетке обработка сигналов по амплитуде и фазе может быть дополнена поляризационной обработкой.

На начальном этапе развития радиотехники применялись вибраторные антенные решетки, в фидерном тракте которых арифметически суммировались напряжения, наводимые отдельными вибраторами при падении волны по нормали к полотну АР. Появился простейший, используемый и сейчас, вид АР - синфазные остронаправленные антенны. Вторым видом простейших АР являются антенны бегущей волны (АБВ), в которых суммирование напряженности от отдельных вибраторов для заданного направления прихода волны происходит с учетом фазовых сдвигов в питающей линии. Третьим видом АР можно считать ненаправленные бортовые антенны, в которых для излучения во все окружающее пространство и устранения явлений дифракции и затенения носителем применяется система разнесенных слабонаправленных излучателей.

Четвертый вид - совмещенные антенны - возник в последний период с целью использовать одну апертуру для работы нескольких антенн на различных частотах. Это достигается встраиванием одной антенны (решетки, облучателя) в другую. Система излучателей, настроенных на ряд частот и возбуждаемых одной линией передачи, образует, как известно, один из видов широкополосных антенн. Все эти виды можно объединить в один класс многоэлементных антенн.

В РЛС нашли широкое применение моноимпульсные антенны, в которых с одного раскрыва одновременно формируются три луча, т. е. три диаграммы направленности, называемые суммарно-разностными. В таких антеннах три канала обработки сигнала (суммарный и разностные - угломестный и азимутальный) позволяют увеличить по сравнению с одноканальной системой точность определения угловых координат при, прочих равных условиях. Антенная решетка или эквивалентная ей апертурная антенна позволяет сформировать несколько ортогональных ДН, осуществить одновременный обзор пространства и произвести обработку сигнала в нескольких независимых каналах. В соответствии с предлагаемой классификацией такие антенны образуют класс многолучевых антенн, в излучающей части которых одновременно создается набор амплитудно-фазовых распределений (АФР), каждому из которых соответствует определенный вход.

Переизлучающие антенны представляют собой класс приемопередающих устройств, в которых фокусируется приходящая волна обратно в направлении источника падающей волны. Простейшая переизлучающая антенна - это уголковый отражатель. Его дискретным аналогом является решетка Ван-Этта. В зависимости от назначения переизлучающих антенн они могут быть активными и пассивными элементами радиосистемы. В активных переизлучающих антеннах осуществляется усиление принятых сигналов, изменение (смещение) частоты принимаемого сигнала, модуляция колебаний (с целью передачи информации в требуемом направлении). Все эти функции могут выполняться и одновременно. Переизлучающие решетки на основе диаграммообразующих многолучевых антенн имеют лучшие параметры.

Рост скоростей летательных аппаратов потребовал от антенн РЛС быстрого безынерционного сканирования луча в пространстве при сохранении направленных свойств, достигнутых в зеркальных антеннах с механическим сканированием. Это привело к интенсивному развитию фазированных антенных решеток с электрическим сканированием: частотным, фазовым и коммутационным.

Появление активных антенн вызвано стремлением увеличить излучаемую мощность, уменьшить тепловые потери, увеличить надежность ФАР, а в слабонаправленных антеннах уменьшить габариты и расширить рабочую полосу. До тех пор пока в антенне (ФАР) используются линейные взаимные устройства для создания управляемых АФР, не делается различия между характеристиками антенны при приеме и передаче и рассматривается обработка сигнала в режиме, наиболее удобном для анализа. Переход к активным антеннам приводит к появлению независимых приемных и передающих антенн, хотя и не исключает наличия приемопередающих.

Динамическими антеннами (или антеннами с временной модуляцией параметров) называются такие, которые имеют характеристики, изменяющиеся во времени. Изменяемыми параметрами могут быть: амплитудное и фазовое распределения поля (токов) в раскрыве, линейные размеры антенны, время включения отдельного элемента решетки и т. д. Периодическое изменение параметров, в принципе, позволяет осуществить быстрое сканирование луча в пространстве, сформировать заданные характеристики направленности. Так, с помощью переключения элементов решетки в динамических антеннах могут быть получены ДН с малым уровнем боковых лепестков. Однако следует иметь в виду, что при таком формировании ДН с малым уровнем боковых лепестков падает КНД антенны, растут потери и шумы от включения в антенну коммутаторов.

Адаптивными или самонастраивающимися называют антенны, характеристики которых приспосабливаются (оптимизируются) в процессе работы к меняющимся внешним условиям. Процесс адаптации происходит автоматически в соответствии с алгоритмом, заложенным в антенной системе. В антенную систему может входить не только система обработки сигнала, но и система управления лучом. В процессе адаптации изменяется характеристика направленности на основе обработки принятых ею сигналов. Например, в зависимости от помеховой обстановки в ДН адаптивной антенны может формироваться один или несколько глубоких провалов в направлении прихода мешающих сигналов. В зависимости от критерия адаптации в этом классе антенн можно выделить несколько видов.

Антеннами с нелинейной обработкой сигнала называют антенные решетки, сигнал на выходе которых является произведением или корреляционной функцией (перемножение и усреднение во времени) сигналов от отдельных элементов. Используя различные методы нелинейной обработки сигнала (умножение, возведение в степень, деление, усреднение и т. д.), можно построить антенны, свойства которых будут существенно отличаться от свойств антенн обычного типа. Так, например, перемножая сигналы от элементов решетки (мультипликативная антенна), можно существенно сузить ее ДН. В антеннах с логическим синтезом - другой разновидности антенн с нелинейной обработкой сигнала - удается получить очень низкий уровень боковых лепестков ДН. Это достигается применением логических устройств типа "да-нет", "или", "и", "больше-меньше" при "срезании" боковых лепестков для всех сигналов, превышающих определенный уровень. Следует особо отметить, что в таких антеннах формирование ДН существенно изменится при воздействии не одного, а сразу двух или больше сигналов.

Наибольшее распространение в системах апертурного синтеза находит принцип нелинейной обработки сигнала, под которым понимается создание сплошной апертуры при помощи небольшого числа подвижных антенн. Метод основан на априорной информации о траектории движения носителя подвижной антенны. Его сущность заключается в приеме сигналов при движении, их запоминании и соответствующем сложении, как это делается в большой ФАР. Антенны с синтезированной апертурой являются перспективными для бортовых РЛС с повышенной разрешающей способностью (наблюдением земной поверхности) и радиотелескопов. Бортовые РЛС с синтезированной апертурой позволяют получить высокую линейную разрешающую способность по угловым координатам, соответствующую обычной антенне с раскрывом в сотни и тысячи длин волн.

В антеннах с нелинейной обработкой сигнала, включая антенны с синтезированной апертурой, сужение ДН не приводит к увеличению усиления антенны. Более того, происходит снижение за счет дополнительных потерь при обработке.

Новый класс приемных антенн с цифровой обработкой сигнала - цифровые антенные решетки - включает в себя системы усилителей, смесителей, фазовых детекторов и аналогово-цифровых преобразователей, а также ЭВМ, с помощью которых осуществляется цифровое формирование ДН.

Радиооптические антенные решетки представляют собой приемные антенны с оптической обработкой сигнала. Принятое каждым излучателем АР колебание СВЧ переносится на промежуточную частоту и после усиления с помощью многоканального модулятора света (динамического транспаранта) преобразуется в колебания оптического диапазона. Дальнейшая обработка осуществляется в оптическом диапазоне с помощью системы, содержащей лазер, коллиматор, линзы, диафрагмы, оптические фильтры, транспаранты и т. д. В этой системе происходит аналоговая обработка пространственно-временной информации. В результате на выходе системы в реальном масштабе времени формируется оптическое изображение радиолокационной обстановки в пространстве перед приемной АР. С помощью оптико-электронных устройств это изображение может быть преобразовано в сигналы для последующей обработки в ЭВМ.

Освоение все более коротких волн вплоть до оптического диапазона, отсутствие необходимой элементной базы для работы на этих диапазонах, трудность построения электрически сканирующих антенн этого диапазона на принципах построения антенн предшествующих диапазонов привели к идеям использования голографических методов для формирования и управления ДН антенн, получивших название голографических. Голографические антенны - это новый класс планарных антенн в виде амплитудных (полосковых) либо фазовых структур, обладающих фокусирующими свойствами зонных пластин и секционированных линз. Они могут быть сфокусированы как в дальнюю, так и ближнюю зоны.

Приведенная выше классификация допускает одновременное применение двух или более способов обработки сигналов в одной антенне. Так, существуют моноимпульсные ФАР с фазовым сканированием и адаптацией или приемные цифровые многолучевые антенны. Подобное разделение антенн оказывается удобным и в теоретическом плане.

Общую конструкторскую задачу построения антенн по заданным требованиям, т. е. синтез антенн, в теоретическом плане принято разделять на внешнюю и внутреннюю задачи. Решение внешней задачи для антенн с обработкой сигнала практически сводится к построению антенной решетки, обеспечивающей заданную направленность в секторе обзора (сканирования). Решение внутренней задачи должно обеспечивать необходимое возбуждение антенны, найденное из решения внешней задачи, и требуемую обработку сигнала. В зависимости от способа обработки центр тяжести решения внутренней задачи перемещается с одних устройств на другие.

Решение внешней задачи - построение антенной решетки - может быть выполнено без учета последующей обработки сигнала и оказывается общим для различного класса антенн.

Посвященная антеннам. Продолжая тему, хочу рассказать хабраобществу о принципах работы фазированных антенных решеток (ФАР). ФАР нашли широкое применение в радиолокационных комплексах, противоракетной обороне, космической связи; применение в гражданских объектах (коммерческих) затруднено сложностью изготовления и дороговизной. Возможно кто-то заинтересуется тематикой и придумает эффективное применение ФАР для коммерческого применения.

Что это?

ФАР это группа излучателей (фазовращателей, ФВ), в которых относительные фазы сигналов изменяются комплексно по определенному закону так, что эффективное излучение ФАР усиливается в желаемом направлении и подавляется во всех остальных. ФАР это матрица, где элементом матрицы является ФВ, но конечно же ФВ в пространстве могут иметь и другие конфигурации. На рисунке 1 показана РЛС секторного обзора «Имбирь», входит в состав зенитно-ракетного комплекса С300В. Можно увидеть и ФАР, и облучающий рупор.

Рисунок 1.

Как происходит фазирование?

Есть простая формула из курса физики: V = c/sqrt(mu*eps). В этой формуле V – фазовая скорость электромагнитной волны, с c – скорость света в вакууме, mu – магнитная проницаемость, eps – диэлектрическая проницаемость. Из этой формулы видно, что фазовая скорость зависит от мю и эпсилон, и меняя эти величины мы можем вводить задержку ЭМ волны через ФВ. Поэтому ФВ бывают ферритовые (можем менять их магнитную проницаемость) и сегнетоэлектрические (можем менять их диэлектрическую проницаемость). Питание к фазовращателям осуществляется по воздушному тракту (как на рис. 1) или посредством волноводов (например, в малогабаритных зенитно-ракетных комплексах, рис. 2).

Рисунок 2. ЗРК «Тор».

Схема ФАР на рис. 4 : антенна представляет собой линейку излучателей, между разделителем мощности и излучателями включены ФВ. Ферритовый ФВ представляет собой аналоговый феррит цилиндрической формы, на который намотаны обмотки управления. Изменяя ток в обмотках управления (задается блоком управления ФВ) изменяется магнитная проницаемость и соответственно фазовая скорость ЭМ волны в ФВ. Таким образом, последовательно изменяя уровень сигнала управления в обмотках процесс формирования волнового фронта может представлен как показано на рисунке 3, 4 (одномерный случай). Можно провести аналогию с камешками, которые последовательно кидаем в воду. Еще одной аналогией работы ФАР может служить линза. На рисунке 5 показано изменение формы волнового фронта с помощью линзы .


Рисунок 3. Формирование волнового фронта.


Рисунок 4. Схема ФАР.


Рисунок 5.

Рисунок 6. Типичная диаграмма направленности.

Электрическое сканирование обеспечивает создание разнообразных фазовых сдвигов по всему раскрыву и значительную скорость изменения этих сдвигов при сравнительно небольших потерях мощности. Управление работой фазовращателей осуществляется при помощи быстродействующей электронной системы, которая в простейших случаях управляет группами элементов (например, строками и столбцами в плоских ФАР с прямоугольным расположением излучателей), а в наиболее сложных – каждым фазовращателем в отдельности. Качание луча в пространстве может производиться как по заранее заданному закону, так и по программе, вырабатываемой в ходе работы всего радиоустройства, в которое входит ФАР .

Рисунки к статье можно найти в указанной литературе, кроме рисунка 3. Для более подробного ознакомления с ФАР и управлением ими могу порекомендовать книгу Самойленко и Шишова, «Управление фазированными антенными решетками».

Литература:

1. О. Г. Вендик, «Фазированная антенная решетка – глаза радиотехнической системы», 1997 г.

Посвященная антеннам. Продолжая тему, хочу рассказать хабраобществу о принципах работы фазированных антенных решеток (ФАР). ФАР нашли широкое применение в радиолокационных комплексах, противоракетной обороне, космической связи; применение в гражданских объектах (коммерческих) затруднено сложностью изготовления и дороговизной. Возможно кто-то заинтересуется тематикой и придумает эффективное применение ФАР для коммерческого применения.

Что это?

ФАР это группа излучателей (фазовращателей, ФВ), в которых относительные фазы сигналов изменяются комплексно по определенному закону так, что эффективное излечение ФАР усиливается в желаемом направлении и подавляется во всех остальных. ФАР это матрица, где элементом матрицы является ФВ, но конечно же ФВ в пространстве могут иметь и другие конфигурации. На рисунке 1 показана РЛС секторного обзора «Имбирь», входит в состав зенитно-ракетного комплекса С300В. Можно увидеть и ФАР, и облучающий рупор.

Рисунок 1.

Как происходит фазирование?

Есть простая формула из курса физики: V = c/sqrt(mu*eps). В этой формуле V – фазовая скорость электромагнитной волны, с c – скорость света в вакууме, mu – магнитная проницаемость, eps – диэлектрическая проницаемость. Из этой формулы видно, что фазовая скорость зависит от мю и эпсилон, и меняя эти величины мы можем вводить задержку ЭМ волны через ФВ. Поэтому ФВ бывают ферритовые (можем менять их магнитную проницаемость) и сегнетоэлектрические (можем менять их диэлектрическую проницаемость). Питание к фазовращателям осуществляется по воздушному тракту (как на рис. 1) или посредством волноводов (например, в малогабаритных зенитно-ракетных комплексах, рис. 2).



Рисунок 2. ЗРК «Тор».

Схема ФАР на рис. 4 : антенна представляет собой линейку излучателей, между разделителем мощности и излучателями включены ФВ. Ферритовый ФВ представляет собой аналоговый феррит цилиндрической формы, на который намотаны обмотки управления. Изменяя ток в обмотках управления (задается блоком управления ФВ) изменяется магнитная проницаемость и соответственно фазовая скорость ЭМ волны в ФВ. Таким образом, последовательно изменяя уровень сигнала управления в обмотках процесс формирования волнового фронта может представлен как показано на рисунке 3, 4 (одномерный случай). Можно провести аналогию с камешками, которые последовательно кидаем в воду. Еще одной аналогией работы ФАР может служить линза. На рисунке 5 показано изменение формы волнового фронта с помощью линзы .


Рисунок 3. Формирование волнового фронта.



Рисунок 4. Схема ФАР.


Рисунок 5.


Рисунок 6. Типичная диаграмма направленности.

Электрическое сканирование обеспечивает создание разнообразных фазовых сдвигов по всему раскрыву и значительную скорость изменения этих сдвигов при сравнительно небольших потерях мощности. Управление работой фазовращателей осуществляется при помощи быстродействующей электронной системы, которая в простейших случаях управляет группами элементов (например, строками и столбцами в плоских ФАР с прямоугольным расположением излучателей), а в наиболее сложных – каждым фазовращателем в отдельности. Качание луча в пространстве может производиться как по заранее заданному закону, так и по программе, вырабатываемой в ходе работы всего радиоустройства, в которое входит ФАР .

Фазированная антенная решётка (ФАР), фазированная решётка, антенная решётка с управляемыми фазами или разностями фаз (фазовыми сдвигами) волн, излучаемых (или принятых) её элементами (излучателями). Управление фазами (фазирование) позволяет: формировать (при разнообразных расположениях излучателей) необходимую диаграмму направленности (ДН) ФАР (например, остронаправленную ДН – луч); изменять направление луча неподвижной ФАР и т. о. осуществлять быстрое, в ряде случаев практически безынерционное, сканирование – качание луча (см., например, Сканирование в радиолокации); в определённых пределах формой ДН – изменять ширину луча, интенсивность (уровни) боковых лепестков и т. п. (для этого в ФАР иногда осуществляют также управление и амплитудами волн отдельных излучателей). Эти и некоторые другие свойства ФАР, а также применять для управления ФАР современные средства автоматики и ЭВМ обусловили их перспективность и широкое в радиосвязи , радиолокации , радионавигации , радиоастрономии и т. д. ФАР, содержащие управляемых элементов (иногда 104 и более), входят в различных наземных (стационарных и подвижных), корабельных, авиационных и космических радиоустройств. Ведутся интенсивные разработки в направлении дальнейшего развития теории и техники ФАР и расширения области их применения.

Структура ФАР. Формы, размеры и конструкции современных ФАР весьма разнообразны; их разнообразие определяется как типом используемых излучателей, так и характером их расположения (рис. 1 ). сканирования ФАР определяется ДН её излучателей. В ФАР с быстрым широкоугольным качанием луча обычно используются слабонаправленные излучатели: симметричные и несимметричные вибраторы , часто с одним или несколькими рефлекторами (например, в виде общего для всей ФАР зеркала); открытые концы радиоволноводов , щелевые, рупорные, спиральные, диэлектрические стержневые, логопериодические и др. антенны . Иногда большие по размерам ФАР составляют из отдельных малых ФАР (модулей); ДН последних ориентируется в направлении основного луча всей ФАР. В ряде случаев, например допустимо медленное отклонение луча, в качестве излучателей используют остронаправленные антенны с механическим поворотом (например, т. н. полноповоротные зеркальные); в таких ФАР отклонение луча на выполняют посредством поворота всех антенн и фазирования излучаемых ими волн; фазирование этих антенн позволяет также осуществлять в пределах их ДН быстрое качание луча ФАР.

В зависимости от требуемой формы ДН и необходимого пространственного сектора сканирования в ФАР применяют различное взаимное расположение элементов: вдоль линии ( или дуги); по поверхности (например, плоской – в т. н. плоских ФАР; цилиндрической; сферической) или в заданном объёме (объёмные ФАР). Иногда излучающей поверхности ФАР – раскрыва (см. Излучение и приём радиоволн ), определяется конфигурацией объекта, на котором устанавливается ФАР (например, формой ИСЗ). ФАР с формой раскрыва, подобной форме объекта, иногда называются конформными. Широко распространены плоские ФАР; в них луч может сканировать от направления нормали к раскрыву (как в синфазной антенне ) до направления раскрыва (как в бегущей волны антенне ). Коэффициент направленного действия (КНД) плоской ФАР при отклонении луча от нормали к раскрыву уменьшается. Для обеспечения широкоугольного сканирования (в больших пространственных углах – до 4(стер ) без заметного снижения КНД используют ФАР с неплоским (например, сферическим) раскрывом или системы плоских ФАР, ориентированных в различных направлениях. в этих системах осуществляется посредством возбуждения соответственно ориентированных излучателей и их фазирования.

Управление фазовыми сдвигами. По способу изменения фазовых сдвигов различают ФАР с электромеханическим сканированием, осуществляемым, например, посредством изменения геометрической формы возбуждающего радиоволновода (рис. 2 , а); частотным сканированием, основанным на использовании зависимости фазовых сдвигов от частоты, например за счёт длины фидера между соседними излучателями (рис. 2, б) или дисперсии волн в радиоволноводе; с электрическим сканированием, реализуемым при помощи фазосдвигающих цепей или фазовращателей , управляемых электрическими сигналами (рис. 2 , в) с плавным (непрерывным) или ступенчатым (дискретным) изменением фазовых сдвигов.

Наибольшими возможностями обладают ФАР с электрическим сканированием. Они обеспечивают разнообразных фазовых сдвигов по всему раскрыву и значительную изменения этих сдвигов при сравнительно небольших потерях мощности. На СВЧ в современных ФАР широко используют ферритовые и полупроводниковые фазовращатели (с быстродействием порядка мксек и потерями мощности ~ 20%). Управление работой фазовращателей осуществляется при помощи быстродействующей электронной системы, которая в простейших случаях управляет группами элементов (например, строками и столбцами в плоских ФАР с прямоугольным расположением излучателей), а в наиболее сложных – каждым фазовращателем в отдельности. Качание луча в пространстве может производиться как по заранее заданному закону, так и по программе, вырабатываемой в ходе работы всего радиоустройства, в которое входит ФАР.

Особенности построения ФАР. Возбуждение излучателей ФАР (рис. 3 ) производится либо при помощи фидерных линий, либо посредством свободно распространяющихся волн (в т. н. квазиоптических ФАР), фидерные тракты возбуждения наряду с фазовращателями иногда содержат сложные электрические устройства (т. н. диаграммообразующие схемы), обеспечивающие всех излучателей от нескольких входов, что позволяет в пространстве соответствующие этим входам одновременно сканирующие (в многолучевых ФАР). Квазиоптические ФАР в основном бывают типов: проходные (линзовые), в которых фазовращатели и основные излучатели возбуждаются (при помощи вспомогательных излучателей) волнами, распространяющимися от общего облучателя, и отражательные – основной и вспомогательные излучатели совмещены, а на выходах фазовращателей установлены отражатели. Многолучевые квазиоптические ФАР содержат облучателей, каждому из которых соответствует свой луч в пространстве. Иногда в ФАР для формирования ДН применяют фокусирующие устройства (зеркала, линзы). Рассмотренные ФАР иногда называются пассивными.

Наибольшими возможностями управления характеристиками обладают активные ФАР, в которых к каждому излучателю или модулю подключен управляемый по фазе (иногда и по амплитуде) передатчик или приёмник (рис. 4 ). Управление фазой в активных ФАР может производиться в трактах промежуточной частоты либо в цепях возбуждения когерентных передатчиков, гетеродинов приёмников и т. п. Таким образом, в активных ФАР фазовращатели могут в диапазонах волн, отличных от частотного диапазона антенны; потери в фазовращателях в ряде случаев непосредственно не влияют на уровень основного сигнала. Передающие активные ФАР позволяют осуществить в пространстве мощностей когерентных электромагнитных волн, генерируемых отдельными передатчиками. В приёмных активных ФАР совместная обработка сигналов, принятых отдельными элементами, позволяет получать более полную информацию об источниках излучения.

В результате непосредственного взаимодействия излучателей между собой характеристики ФАР ( излучателей с возбуждающими фидерами, КНД и др.) при качании луча изменяются. Для борьбы с вредными последствиями взаимного влияния излучателей в ФАР иногда применяют специальные методы компенсации взаимной связи между элементами.

Перспективы развития ФАР. К наиболее важным направлениям дальнейшего развития теории и техники ФАР относятся: 1) широкое внедрение в радиотехнические устройства ФАР с большим числом элементов, разработка элементов новых типов, в частности для активных ФАР; 2) развитие методов построения ФАР с большими размерами раскрывов, в том числе неэквидистантных ФАР с остронаправленными антеннами, расположенными в пределах целого полушария Земли (глобальный радиотелескоп ), 3) дальнейшая разработка методов и технических средств ослабления вредных влияний взаимной связи между элементами ФАР; 4) развитие теории синтеза и методов машинного проектирования ФАР; 5) разработка теории и в практику новых методов обработки информации, принятой элементами ФАР, и использования этой информации для управления

ФАР, в частности для автоматического фазирования элементов (самофазирующиеся ФАР) и изменения формы ДН, например понижения уровня боковых лепестков в направлениях на источники помех (адаптивные ФАР); 6) методов управления независимым движением отдельных лучей в многолучевых ФАР.

Лит.: Вендик О. Г., Антенны с немеханическим движением луча, М., 1965; Сканирующие антенные системы СВЧ, пер. с англ., т. 1–3, М., 1966–71.

М. Б. Заксон.

Рис. 3. Типовые схемы возбуждения фазированных антенных решёток (ФАР) с последовательных возбуждением (а), параллельным возбуждением (б), многолучевой ФАР (в), квазиоптических ФАР - проходного (г) и отражательного (д) типов: В - возбуждающий фидер; И - излучатели; ПН - поглощающая ; Л - диаграмма направленности (луч); B1 - B4 входы ФАР; ДС - диаграммообразующая схема; ОИ - основные излучатели; ВИ - вспомогательные излучатели; СИ - совмещенные излучатели; О - облучатель; От - ; j - фазовращатель; пунктиром изображена электромагнитная с плоским фазовым фронтом, излучаемая ФАР, штрих-пунктиром - со сферическим фазовым фронтом, излучаемая облучателем.

Рис. 2. Примеры фазированных антенных решёток с электромеханическим (а), частотным (б) и электрическим (в) сканированием: Щ, - щелевые излучатели; В - возбуждающий волновод; Н - продольная пластина (нож) с управляемой глубиной погружения в волновод (служит для изменения фазовой скорости в волноводе); Д - дроссельные канавки; Р - рупоры; СВ - спиральный волновод; ДА - диэлектрические стержневые антенны; Ф - ферритовый стержень фазовращателя; ВВ - возбуждающие волноводы; О - управляющая обмотка фазовращателя; Ш - диэлектрическая .

Рис. 4. Структурные схемы некоторых активных фазированных антенных решёток - передающей (а), приёмной с фазированием в цепях гетеродина (б) и приёмной с фазированием в трактах промежуточной частоты (в): И - излучатель; УМ - мощности; В - возбудитель; С - ; Г - гетеродин; УПЧ - усилитель промежуточной частоты; СУ - суммирующее устройство; j - фазовращатель.

Рис. 1. Структурные схемы некоторых фазированных антенных решеток (ФАР) - линейной эквидистантной с симметричными вибраторами и общим зеркалом (а); линейной неэквидистантной с полноповоротными зеркальными параболическими антеннами (б); плоской с прямоугольным расположением рупорных излучателей (в); плоской с гексагональным расположением диэлектрических стержневых излучателей (г); конформной с щелевыми излучателями (д); сферической со спиральными излучателями (е); системы плоских фазированных антенных решеток (ж); В - вибраторы; Ф - линии возбуждения (фидеры); З - токопроводящее (); А - зеркальные антенны; Р - рупоры; ВР - возбуждающие радиоволны; Э - металлический экран; Щ - щелевые излучатели; К - коническая ФАР; Ц - цилиндрическая ФАР; С - спиральные излучатели; СЭ - сферический ; П - плоские фазированные антенные решетки (точками обозначены излучатели); L0 - между В; l1, l 2, l3 - расстояния между А.