Расположим числовую окружность в координатной плоскости так, чтобы центр окружности совместился с началом координат, а её радиус принимаем за единичный. Числовая окружность на координатной плоскости 2 числовая окружность на координатной плоскости

Слайд 2

Что будем изучать: Определение. Важные координаты числовой окружности. Как искать координату числовой окружности? Таблица основных координат числовой окружности. Примеры задач.

Слайд 3

Определение. Расположим числовую окружность в координатной плоскости так, чтобы центр окружности совместился с началом координат, а её радиус принимаем за единичный отрезок. Начальная точка числовой окружности A совмещена с точкой (1;0). Каждая точка числовой окружности имеет в координатной плоскости свои координаты х и у, причем: x > 0, у > 0 в первой четверти; х 0 во второй четверти; х 0, у

Слайд 4

Нам важно научиться находить координаты точек числовой окружности представленных на рисунке ниже:

Слайд 5

Найдем координату точки π/4: Точка М(π/4)- середина первой четверти. Опустим из точки М перпендикуляр МР на прямую ОА и рассмотрим треугольник OMP.Так как дуга АМ составляет половину дуги АВ, то ∡MOP=45° Значит, треугольник OMP - равнобедренный прямоугольный треугольник и OP=MP, т.е. у точки M абсцисса и ордината равны: x = y Так как координаты точки M(х;y) удовлетворяют уравнению числовой окружности, то для их нахождения нужно решить систему уравнений: Решив данную систему получаем: Получили, что координаты точки M, соответствующей числу π/4 будут Аналогичным образом рассчитываются координаты точек представленных на предыдущем слайде.

Слайд 6

Слайд 7

Координаты точек числовой окружности.

Слайд 8

Пример Найти координату точки числовой окружности: Р(45π/4) Решение: Т.к. числам t и t+2π k (k-целое число) соответствует одна и тоже точка числовой окружности то: 45π/4 = (10 + 5/4) π = 10π +5π/4 = 5π/4 + 2π 5 Значит, числу 45π/4 соответствует та же точка числовой окружности, что и числу 5π/4. Посмотрев значение точки 5π/4 в таблице получаем:

Слайд 9

Пример Найти координату точки числовой окружности: Р(-37π/3) Решение: Т.к. числам t и t+2π k (k-целое число) соответствует одна и тоже точка числовой окружности то: -37π/3 = -(12 + 1/3) π = -12π –π/3 = -π/3 + 2π (-6) Значит, числу -37π/3 соответствует та же точка числовой окружности, что и числу –π/3, а числу –π/3 соответствует та же точка что и 5π/3. Посмотрев значение точки 5π/3 в таблице получаем:

Слайд 10

Найти на числовой окружности точки с ординатой у = 1/2 и записать, каким числам t они соответствуют. Пример Прямая у = 1/2 пересекает числовую окружность в точках М и Р. Точка М соответствует числу π/6 (из данных таблицы)значит, и любому числу вида π/6+2π k. Точка Р соответствует числу 5π/6, а значит, и любому числу вида 5π/6+2 π k Получили, как часто говорят в таких случаях, две серии значений:π/6+2 π k и 5π/6+2 π k Ответ: t= π/6+2 π k иt= 5π/6+2 π k Числовая окружность на координатной плоскости.

Слайд 11

Пример Найти на числовой окружности точки с абсциссой x≥ и записать, каким числам t они соответствуют. Прямая x= 1/2 пересекает числовую окружность в точках М и Р. Неравенствуx ≥ соответствуют точки дуги РМ. Точка М соответствует числу 3π/4 (из данных таблицы)значит, и любому числу вида -3π/4+2π k. Точка Р соответствует числу -3π/4, а значит, и любому числу вида – -3π/4+2 π k Тогда получим -3π/4+2 π k≤t≤3π/4+2 π k Ответ: -3π/4+2 π k≤t≤3π/4+2 π k Числовая окружность на координатной плоскости.

Слайд 12

Числовая окружность на координатной плоскости.

Задачи для самостоятельного решения. 1) Найти координату точки числовой окружности: Р(61π/6)? 2) Найти координату точки числовой окружности: Р(-52π/3) 3) Найти на числовой окружности точки с ординатой у = -1/2 и записать, каким числам t они соответствуют. 4) Найти на числовой окружности точки с ординатой у ≥-1/2 и записать, каким числам t они соответствуют. 5)Найти на числовой окружности точки с абсциссой x≥ и записать, каким числам t они соответствуют.

Посмотреть все слайды

Числовой окружности в 10 классе уделяется достаточно много времени. Это связано со значимостью этого математического объекта для всего курса математики.

Огромное значение для хорошего усвоения материала имеет правильная подборка средств обучения. К наиболее эффективным таким средствам относятся видеоуроки. В последнее время они достигают пика популярности. Поэтому автор не стал отставать от современности и разработал в помощь учителям математики столь замечательное пособие - видеоурок по теме «Числовая окружность на координатной плоскости».

Данный урок по длительности занимает 15:22 минут. Это практически максимальное время, которое может затратить учитель на самостоятельное объяснение материала по теме. Так как на объяснение нового материала уходит столько много времени, то на закрепление необходимо подобрать самые эффективные задания и упражнения, а также выделить еще один урок, где обучающиеся будут решать задания по данной теме.

Урок начинается с изображения числовой окружности в системе координат. Автор строит эту окружность и поясняет свои действия. Затем автор называет точки пересечения числовой окружности с осями координат. Далее поясняется, какие координаты будут иметь точки окружности в разных четвертях.

После этого автор напоминает, как выглядит уравнение окружности. И вниманию слушателей представляется два макета с изображением некоторых точек на окружности. Благодаря этому, на следующем шаге автор показывает, как находятся координаты точек окружности, соответствующие определенным числам, отмеченным на шаблонах. Так получается таблица значений переменных xи y в уравнении окружности.

Далее предлагается рассмотреть пример, где необходимо определить координаты точек окружности. Перед тем, как начинать решать пример, вводится некоторое замечание, которое помогает при решении. А затем на экране появляется полное, четко структурированное и наполненное иллюстрациями решение. Здесь также присутствуют таблицы, которые облегчают понимание сущность примера.

Затем рассматриваются еще шесть примеров, которые менее трудоемкие, чем первый, но не менее важные и отражающие главную идею урока. Здесь решения представлены в полном объеме, с подробным рассказом и с элементами наглядности. А именно, в решении присутствуют рисунки, иллюстрирующие ход решения, и математическая запись, формирующая математическую грамотность обучающихся.

Учитель может ограничиться и теми примерами,которые рассмотрены в уроке, но этого может быть недостаточно для качественного усвоения материала. Поэтому подобрать задания для закрепления просто крайне важно.

Урок может быть полезен не только учителям, время которых постоянно ограничено, но и обучающимся. Особенно тем, кто получает семейное образование или занимается самообразованием. Материалами могут пользоваться те обучающиеся, которые пропустили урок по данной теме.

ТЕКСТОВАЯ РАСШИФРОВКА:

Тема нашего урока «ЧИСЛОВАЯ ОКРУЖНОСТЬ НА КООРДИНАТНОЙ ПЛОСКОСТИ»

Мы уже знакомы с декартовой прямоугольной системой координат xOy (икс о игрек). В этой системе координат расположим числовую окружность так, чтобы центр окружности был совмещен с началом координат, а ее радиус примем за масштабный отрезок.

Начальная точка А числовой окружности совмещена с точкой с координатами (1;0) , В - с точкой (0;1), С - с (-1;0)(минус один, нуль), а D - с (0; -1)(нуль, минус один).

(смотри рис 1)

Так как каждая точка числовой окружности имеет в системе xOy (икс о игрек) свои координаты, то для точек первой четверти икх больше нуля и игрек больше нуля;

Во-второй четверти икх меньше нуля и игрек больше нуля,

для точек третьей четверти икх меньше нуля и игрек меньше нуля,

а для четвертой четверти икх больше нуля и игрек меньше нуля

Для любой точки E (x;y)(с координатами икс, игрек) числовой окружности выполняются неравенства -1≤ х≤ 1, -1≤у≤1 (икс больше либо равно минус один, но меньше либо равно один; игрек больше либо равно минус один, но меньше либо равно один).

Вспомним, что уравнение окружности радиусом R c центром в начале координат имеет вид х 2 + у 2 =R 2 (икс квадрат плюс игрек квадрат равно эр квадрат). А для единичной окружности R =1, поэтому получаем х 2 + у 2 = 1

(икс квадрат плюс игрек квадрат равно один).

Найдем координаты точек числовой окружности, которые представлены на двух макетах (см. рис 2, 3)

Пусть точка E, которая соответствует

(пи на четыре) - середина первой четверти изображенная на рисунке. Из точки E опустим перпендикуляр EK на прямую ОА и рассмотрим треугольник ОEK. Угол АОЕ =45 0 , так как дуга АЕ составляет половину дуги АВ. Следовательно, треугольник ОЕК - равнобедренный прямоугольный, у которого ОК = ЕК. Значит, абсцисса и ордината точки Е равны, т.е. икс равно игрек. Чтобы найти координаты точки Е, решим систему уравнений: (икс равно игрек- первое уравнение системы и икс квадрат плюс игрек квадрат равно один - второе уравнение системы).Во второе уравнение системы вместо х подставим у, получим 2у 2 =1(два игрек квадрат равно единице), откуда у= = (игрек равно один деленное на корень из двух равно корень из двух деленное на два) (ордината положительна).Это значит, что точка Е в прямоугольной системе координат имеет координаты(,)(корень из двух деленное на два, корень из двух деленное на два).

Рассуждая аналогично, найдем координаты для точек, соответствующих другим числам первого макета и получим: соответствует точка с координатами (- ,) (минус корень из двух деленное на два, корень из двух деленное на два); для - (- ,-) (минус корень из двух деленное на два, минус корень из двух деленное на два); для (семь пи на четыре) (,)(корень из двух деленное на два, минус корень из двух деленное на два).

Пусть точка D соответствует (рис.5). Опустим перпендикуляр из DР(дэ пэ) на ОА и рассмотрим треугольник ОDР. Гипотенуза этого треугольника OD равна радиусу единичной окружности, то есть единице, а угол DОР равен тридцати градусам, так как дуга АD = диги АВ(а дэ равно одной трети а бэ), а дуга АВ равна девяносто градусов. Следовательно, DР = (дэ пэ равно одной второй О дэ равно одной второй) Так как катет, лежащий против угла в тридцать градусов равен половине гипотенузы, то есть у = (игрек равно одной второй). Применяя теорему Пифагора, получим ОР 2 = ОD 2 - DР 2 (о пэ квадрат равно о дэ квадрат минус дэ пэ квадрат), но ОР = х (о пэ равно икс) . Значит, х 2 = ОD 2 - DР 2 =

значит, х 2 = (икс квадрат равно трем четвертым) и х = (икс равно корень из трех на два).

Икс положительное, т.к. находится в первой четверти. Получили, что точка D в прямоугольной системе координат имеет координаты (,) корень из трех деленное на два, одна вторая.

Рассуждая аналогичным образом, найдем координаты для точек, соответствующих другим числам второго макета и все полученные данные запишем в таблицы:

Рассмотрим примеры.

ПРИМЕР1. Найдите координаты точек числовой окружности: а) С 1 ();

б) С 2 (); в) С 3 (41π); г) С 4 (- 26π). (цэ один соответствующая тридцать пять пи на четыре, цэ два соответствующая минус сорока девяти пи на три, цэ три соответствующая сорок одному пи, цэ четыре соответствующая минус двадцати шести пи).

Решение. Воспользуемся утверждение, полученным ранее: если точка D числовой окружности соответствуют числу t, то она соответствует и любому числу вида t + 2πk(тэ плюс два пи ка), где ка -любое целое число, т.е. kϵZ (ка принадлежит зэт).

а) Получим = ∙ π = (8 +) ∙π = + 2π ∙ 4.(тридцать пять пи на четыре равно тридцать пять на четыре, умноженное на пи равно сумме восьми и трех четвертых, умноженной на пи равно три пи на четыре плюс произведение двух пи на четыре).Это значит, что числу тридцать пять пи на четыре соответствует та же точка числовой окружности, что и числу три пи на четыре. Используя таблицу 1, получим С 1 () = С 1 (- ;) .

б) Аналогично координаты С 2: = ∙ π = - (16 + ∙π = + 2π ∙ (- 8). Значит, числу

соответствует та же точка числовой окружности, что и числу. А числу соответствует на числовой окружности та же точка, что и числу

(показать второй макет и таблицу 2). Для точки имеем х = , у =.

в) 41π = 40π + π = π + 2π ∙ 20.Значит, числу 41π соответствует та же точка числовой окружности, что и числу π - это точка с координатами (-1 ; 0).

г) - 26π = 0 + 2π ∙ (- 13), то есть числу - 26π соответствует та же точка числовой окружности, что и числу ноль, - это точка с координатами (1;0).

ПРИМЕР 2. Найти на числовой окружности точки с ординатой у =

Решение. Прямая у = пересекает числовую окружность в двух точках. Одна точка соответствует числу, вторая точка соответствует числу,

Следовательно все точки получаем прибавляя полный оборот 2πk где k показывает сколько полных оборотов делает точка, т.е. получаем,

а любому числу все числа вида + 2πk. Часто в таких случаях говорят, что получили две серии значений: + 2πk, + 2πk.

ПРИМЕР 3. Найти на числовой окружности точки с абсциссой х = и записать, каким числам t они соответствуют.

Решение. Прямая х = пересекает числовую окружность в двух точках. Одна точка соответствует числу (смотри второй макет),

а значит и любому числу вида + 2πk. А вторая точка соответствует числу, а значит, и любому числу вида + 2πk. Эти две серии значений можно охватить одной записью: ± + 2πk(плюс минус два пи на три плюс два пи ка).

ПРИМЕР 4. Найти на числовой окружности точки с ординатой у > и записать, каким числам t они соответствуют.

Прямая у = пересекает числовую окружность в двух точках M и P. А неравенству у > соответствуют точки открытой дуги МР, это значит дуги без концов (то есть без и) , при движении по окружности против часовой стрелки, начиная с точки М, а заканчивая в точке Р. Значит, ядром аналитической записи дуги МР является неравенство < t < (тэ больше, чем пи на три, но меньше двух пи на три) , а сама аналитическая запись дуги имеет вид + 2πk < t < + 2πk(тэ больше, чем пи на три плюс два пи ка, но меньше двух пи на три плюс два пи ка).

ПРИМЕР5. Найти на числовой окружности точки с ординатой у < и записать, каким числам t они соответствуют.

Прямая у = пересекает числовую окружность в двух точках М и Р. А неравенству у < соответствуют точки открытой дуги РМ при движении по окружности против часовой стрелки, начиная с точки Р, а заканчивая в точке М. Значит, ядром аналитической записи дуги РМ является неравенство < t < (тэ больше, чем минус четыре пи на три, но меньше пи на три) , а сама аналитическая запись дуги имеет вид

2πk < t < + 2πk (тэ больше, чем минус четыре пи на три плюс два пи ка, но меньше пи на три плюс два пи ка).

ПРИМЕР 6. Найти на числовой окружности точки с абсциссой х > и записать, каким числам t они соответствуют.

Прямая х = пересекает числовую окружность в двух точках М и Р. Неравенству х > соответствуют точки открытой дуги РМ при движении по окружности против часовой стрелки с началом в точке Р, которая соответствует,и концом в точке М, которая соответствует. Значит, ядром аналитической записи дуги РМ является неравенство < t <

(тэ больше, чем минус два пи на три, но меньше двух пи на три), а сама аналитическая запись дуги имеет вид + 2πk < t < + 2πk (тэ больше, чем минус два пи на три плюс два пи ка, но меньше двух пи на три плюс два пи ка).

ПРИМЕР 7. Найти на числовой окружности точки с абсциссой х < и записать, каким числам t они соответствуют.

Прямая х = пересекает числовую окружность в двух точках М и Р. Неравенству х< соответствуют точки открытой дуги МР при движении по окружности против часовой стрелки с началом в точке М, которая соответствует, и концом в точке Р, которая соответствует. Значит, ядром аналитической записи дуги МР является неравенство < t <

(тэ больше, чем два пи на три, но меньше четырех пи на три), а сама аналитическая запись дуги имеет вид + 2πk < t < + 2πk (тэ больше, чем два пи на три плюс два пи ка, но меньше четырех пи на три плюс два пи ка).

На этом уроке мы повторим важное свойство числовой окружности и поместим единичную числовую окружность в координатную плоскость по определенным правилам. Вспомним уравнение единичной числовой окружности и с его помощью решим несколько задач на нахождение координат точки на единичной числовой окружности. В конце урока составим таблицу координат для точек кратных π/6 и π/4.

Тема урока, повторение

Ранее мы изучили числовую окружность и выяснили её свойства (рис. 1).

Каждому действительному числу соответствует единственная точка на окружности.

Каждой точке на числовой окружности соответствует не только число но и все числа вида

Числовая окружность в координатной плоскости

Поместим окружность в координатную плоскость . По прежнему, каждому числу соответствует точка на окружности. Теперь этой точке на окружности соответствуют две координаты, как и любой точке координатной плоскости.

Наша задача - по данному числу найти не только точку, но и её координаты, и наоборот, по координатам найти одно или несколько соответствующих чисел.

Пример 1.Дана точка - середина дуги Точке соответствуют числа вида

Найти координаты точки (рис. 3).

Координаты можно найти двумя разными способами, рассмотрим их по очереди.

1. Точка лежит на окружности, R=1, значит, она удовлетворяет уравнению окружности

По условию. Мы помним, что величина центрального угла численно равна длине дуги в радианах, значит, угол Это значит также, что прямая делит первую четверть ровно пополам, значит, это прямая

Точка лежит на прямой поэтому удовлетворяет уравнению этой прямой.

Составим систему из двух уравнений.

Решив систему, получим искомые координаты.

2. Рассмотрим прямоугольный (рис. 4).

Итак, мы задали число нашли точку и её координаты. Определим также координаты симметричных ей точек (рис. 5).

Нахождение прямоугольных координат точек, криволинейные координаты которых кратны

Следующая задача - таким же образом определить координаты точек, кратных

Окружность радиуса R=1 помещена в координатную плоскость, Найти точку на окружности и её координаты (рис. 6).

Рассмотрим - прямоугольный.

Т. е. угол

Найдем координаты симметричных точек (рис. 7).

Мы задали число нашли точку на окружности, эта точка единственная, и нашли её координаты.

Решение задач

Пример 1. Дана точка Найти её прямоугольные координаты.

Точка середина третьей четверти (рис. 8).

Вывод, заключение

Мы поместили числовую окружность в координатную плоскость, научились находить по числу точку на окружности и её координаты. Эта техника лежит в основе определения синуса и косинуса, которые будут рассмотрены далее.

Список литературы

Алгебра и начала анализа, 10 класс (в двух частях). Учебник для общеобразовательных учреждений (профильный уровень)/под ред.

А. Г. Мордковича. - М.: Мнемозина, 2009. Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень)/под ред.

А. Г. Мордковича. - М.: Мнемозина, 2007. Виленкин Н. Я., Ивашев-Мусатов О. С., Шварцбурд С. И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики). - М.: Просвещение, 1996. Галицкий М. Л., Мошкович М. М., Шварцбурд С. И. Углубленное изучение алгебры и математического анализа. - М.: Просвещение, 1997. Сборник задач по математике для поступающих во ВТУЗы (под ред. М. И.Сканави). - М.:Высшая школа, 1992. Мерзляк А. Г., Полонский В. Б., Якир М. С. Алгебраический тренажер. - К.: А. С.К., 1997. Саакян С. М., Гольдман А. М., Денисов Д. В. Задачи по алгебре и началам анализа (пособие для учащихся 10-11 классов общеобразов. учреждений). - М.: Просвещение, 2003. Карп А. П. Сборник задач по алгебре и началам анализа: учеб. пособие для 10-11 кл. с углубл. изуч. математики. - М.: Просвещение, 2006.

Mathematics. ru . Problems. ru . РЕШУ ЕГЭ.

Домашнее задание

Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень)/под ред. А. Г. Мордковича. - М.: Мнемозина, 2007.


Расположим числовую окружность в координатной плоскости так, чтобы центр окружности совместился с началом координат, а её радиус принимаем за единичный отрезок. Начальная точка числовой окружности A совмещена с точкой (1;0). Каждая точка числовой окружности имеет в координатной плоскости свои координаты х и у, причем: 1)x > 0, у > 0 в первой четверти; 2)х 0 во второй четверти; 3)х 0, у 0, у > 0 в первой четверти; 2)х 0 во второй четверти; 3)х 0, у




Найдем координату точки π/4: Точка М(π/4) середина первой четверти. Опустим из точки М перпендикуляр МР на прямую ОА и рассмотрим треугольник OMP.Так как дуга АМ составляет половину дуги АВ, то MOP=45° Значит, треугольник OMP - равнобедренный прямоугольный треугольник и OP=MP, т.е. у точки M абсцисса и ордината равны: x = y Так как координаты точки M(х;y) удовлетворяют уравнению числовой окружности, то для их нахождения нужно решить систему уравнений: Решив данную систему получаем: Получили, что координаты точки M, соответствующей числу π/4 будут Аналогичным образом рассчитываются координаты точек представленных на предыдущем слайде.




Найти координату точки числовой окружности: Р(45π/4) Решение: Т.к. числам t и t+2πk (k-целое число) соответствует одна и тоже точка числовой окружности то: 45π/4 = (10 + 5/4) π = 10π +5π/4 = 5π/4 + 2π5 Значит, числу 45π/4 соответствует та же точка числовой окружности, что и числу 5π/4. Посмотрев значение точки 5π/4 в таблице получаем:


Найти координату точки числовой окружности: Р(-37π/3) Решение: Т.к. числам t и t+2πk (k-целое число) соответствует одна и тоже точка числовой окружности то: -37π/3 = -(12 + 1/3) π = -12π –π/3 = -π/3 + 2π(-6) Значит, числу -37π/3 соответствует та же точка числовой окружности, что и числу –π/3, а числу –π/3 соответствует та же точка что и 5π/3. Посмотрев значение точки 5π/3 в таблице получаем:


Найти на числовой окружности точки с ординатой у = 1/2 и записать, каким числам t они соответствуют. Прямая у = 1/2 пересекает числовую окружность в точках М и Р. Точка М соответствует числу π/6 (из данных таблицы) значит, и любому числу вида π/6 +2π k. Точка Р соответствует числу 5π/6, а значит, и любому числу вида 5π/6 +2 π k Получили, как часто говорят в таких случаях, две серии значений: π/6 +2 π k и 5π/6 +2 π k Ответ: t= π/6 +2 π k и t= 5π/6 +2 π k


Найти на числовой окружности точки с абсциссой x и записать, каким числам t они соответствуют. Прямая x = 1/2 пересекает числовую окружность в точках М и Р. Неравенству x соответствуют точки дуги РМ. Точка М соответствует числу 3π/4 (из данных таблицы) значит, и любому числу вида -3π/4 +2πk. Точка Р соответствует числу -3π/4, а значит, и любому числу вида – -3π/4 +2 π k Тогда получим -3π/4 +2 π k t3π/4 +2 π k Ответ: -3π/4 +2 π k t3π/4 +2 π k


1) Найти координату точки числовой окружности: Р(61π/6)? 2) Найти координату точки числовой окружности: Р(-52π/3) 3) Найти на числовой окружности точки с ординатой у = -1/2 и записать, каким числам t они соответствуют. 4) Найти на числовой окружности точки с ординатой у -1/2 и записать, каким числам t они соответствуют. 5)Найти на числовой окружности точки с абсциссой x и записать, каким числам t они соответствуют.

Урок и презентация на тему: "Числовая окружность на координатной плоскости"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Алгебраические задачи с параметрами, 9–11 классы
Решаем задачи по геометрии. Интерактивные задания на построение для 7-10 классов

Что будем изучать:
1. Определение.
2. Важные координаты числовой окружности.
3. Как искать координату числовой окружности?
4. Таблица основных координат числовой окружности.
5. Примеры решения задач.

Определение числовой окружности на координатной плоскости

Расположим числовую окружность в координатной плоскости так, чтобы центр окружности совместился с началом координат, а её радиус принимаем за единичный отрезок. Начальная точка числовой окружности A совмещена с точкой (1;0).

Каждая точка числовой окружности имеет в координатной плоскости свои координаты х и у, причем:
1) при $x > 0$, $у > 0$ - в первой четверти;
2) при $х 0$ - во второй четверти;
3) при $х 4) при $х > 0$, $у
Для любой точки $М(х; у)$ числовой окружности выполняются неравенства: $-1
Запомните уравнение числовой окружности: $x^2 + y^2 = 1$.

Нам важно научиться находить координаты точек числовой окружности, представленных на рисунке.

Найдем координату точки $\frac{π}{4}$

Точка $М(\frac{π}{4})$ - середина первой четверти. Опустим из точки М перпендикуляр МР на прямую ОА и рассмотрим треугольник OMP.Так как дуга АМ составляет половину дуги АВ, то $∠MOP=45°$.
Значит, треугольник OMP - равнобедренный прямоугольный треугольник и $OP=MP$, т.е. у точки M абсцисса и ордината равны: $x = y$.
Так как координаты точки $M(х;y)$ удовлетворяют уравнению числовой окружности, то для их нахождения нужно решить систему уравнений:
$\begin {cases} x^2 + y^2 = 1, \\ x = y. \end {cases}$
Решив данную систему, получаем: $y = x =\frac{\sqrt{2}}{2}$.
Значит, координаты точки M, соответствующей числу $\frac{π}{4}$, будут $M(\frac{π}{4})=M(\frac{\sqrt{2}}{2};\frac{\sqrt{2}}{2})$.
Аналогичным образом рассчитываются координаты точек, представленных на предыдущем рисунке.

Координаты точек числовой окружности



Рассмотрим примеры

Пример 1.
Найти координату точки числовой окружности: $Р(45\frac{π}{4})$.

Решение:
$45\frac{π}{4} = (10 + \frac{5}{4}) * π = 10π +5\frac{π}{4} = 5\frac{π}{4} + 2π*5$.
Значит, числу $45\frac{π}{4}$ соответствует та же точка числовой окружности, что и числу $\frac{5π}{4}$. Посмотрев значение точки $\frac{5π}{4}$ в таблице, получаем: $P(\frac{45π}{4})=P(-\frac{\sqrt{2}}{2};-\frac{\sqrt{2}}{2})$.

Пример 2.
Найти координату точки числовой окружности: $Р(-\frac{37π}{3})$.

Решение:

Т.к. числам $t$ и $t+2π*k$, где k-целое число, соответствует одна и та же точка числовой окружности то:
$-\frac{37π}{3} = -(12 + \frac{1}{3})*π = -12π –\frac{π}{3} = -\frac{π}{3} + 2π*(-6)$.
Значит, числу $-\frac{37π}{3}$ соответствует та же точка числовой окружности, что и числу $–\frac{π}{3}$, а числу –$\frac{π}{3}$ соответствует та же точка, что и $\frac{5π}{3}$. Посмотрев значение точки $\frac{5π}{3}$ в таблице, получаем:
$P(-\frac{37π}{3})=P(\frac{{1}}{2};-\frac{\sqrt{3}}{2})$.

Пример 3.
Найти на числовой окружности точки с ординатой $у =\frac{1}{2}$ и записать, каким числам $t$ они соответствуют?

Решение:
Прямая $у =\frac{1}{2}$ пересекает числовую окружность в точках М и Р. Точка М соответствует числу $\frac{π}{6}$ (из данных таблицы). Значит, и любому числу вида: $\frac{π}{6}+2π*k$. Точка Р соответствует числу $\frac{5π}{6}$, а значит, и любому числу вида $\frac{5π}{6} +2 π*k$.
Получили, как часто говорят в таких случаях, две серии значений:
$\frac{π}{6} +2 π*k$ и $\frac{5π}{6} +2π*k$.
Ответ: $t=\frac{π}{6} +2 π*k$ и $t=\frac{5π}{6} +2π*k$.

Пример 4.
Найти на числовой окружности точки с абсциссой $x≥-\frac{\sqrt{2}}{2}$ и записать, каким числам $t$ они соответствуют.

Решение:

Прямая $x =-\frac{\sqrt{2}}{2}$ пересекает числовую окружность в точках М и Р. Неравенству $x≥-\frac{\sqrt{2}}{2}$ соответствуют точки дуги РМ. Точка М соответствует числу $3\frac{π}{4}$ (из данных таблицы). Значит, и любому числу вида $-\frac{3π}{4} +2π*k$. Точка Р соответствует числу $-\frac{3π}{4}$, а значит, и любому числу вида $-\frac{3π}{4} +2π*k$.

Тогда получим $-\frac{3π}{4} +2 π*k ≤t≤\frac{3π}{4} +2πk$.

Ответ: $-\frac{3π}{4} +2 π*k ≤t≤\frac{3π}{4} +2πk$.

Задачи для самостоятельного решения

1) Найти координату точки числовой окружности: $Р(\frac{61π}{6})$.
2) Найти координату точки числовой окружности: $Р(-\frac{52π}{3})$.
3) Найти на числовой окружности точки с ординатой $у = -\frac{1}{2}$ и записать, каким числам $t$ они соответствуют.
4) Найти на числовой окружности точки с ординатой $у ≥ -\frac{1}{2}$ и записать, каким числам $t$ они соответствуют.
5) Найти на числовой окружности точки с абсциссой $x≥-\frac{\sqrt{3}}{2}$ и записать, каким числам $t$ они соответствуют.